28 research outputs found

    Expiratory flow rate, breath hold and anatomic dead space influence electronic nose ability to detect lung cancer

    Get PDF
    BACKGROUND: Electronic noses are composites of nanosensor arrays. Numerous studies showed their potential to detect lung cancer from breath samples by analysing exhaled volatile compound pattern ("breathprint"). Expiratory flow rate, breath hold and inclusion of anatomic dead space may influence the exhaled levels of some volatile compounds; however it has not been fully addressed how these factors affect electronic nose data. Therefore, the aim of the study was to investigate these effects. METHODS: 37 healthy subjects (44 +/- 14 years) and 27 patients with lung cancer (60 +/- 10 years) participated in the study. After deep inhalation through a volatile organic compound filter, subjects exhaled at two different flow rates (50 ml/sec and 75 ml/sec) into Teflon-coated bags. The effect of breath hold was analysed after 10 seconds of deep inhalation. We also studied the effect of anatomic dead space by excluding this fraction and comparing alveolar air to mixed (alveolar + anatomic dead space) air samples. Exhaled air samples were processed with Cyranose 320 electronic nose. RESULTS: Expiratory flow rate, breath hold and the inclusion of anatomic dead space significantly altered "breathprints" in healthy individuals (p 0.05). These factors also influenced the discrimination ability of the electronic nose to detect lung cancer significantly. CONCLUSIONS: We have shown that expiratory flow, breath hold and dead space influence exhaled volatile compound pattern assessed with electronic nose. These findings suggest critical methodological recommendations to standardise sample collections for electronic nose measurements

    Exhaled breath condensate pH decreases following oral glucose tolerance test.

    No full text
    Exhaled breath condensate (EBC) pH is a widely measured non-invasive marker of airway acidity. However, some methodological aspects have not been thoroughly investigated. The aim of the study was to determine the effect of oral glucose tolerance test (OGTT) on EBC pH in attempt to better standardize its measurement. Seventeen healthy subjects (24  ±  2 years, 6 men, 11 women) participated in the study. EBC collection and capillary blood glucose measurements were performed before as well as 0, 30, 60 and 120 min after a standardized OGTT test. The rate of respiratory droplet dilution and pH were evaluated in EBC. Blood glucose significantly increased at 30 min and maintained elevation after 60 and 120 min following OGTT. Compared to baseline (7.99  ±  0.25) EBC pH significantly decreased immediately after OGTT (7.41  ±  0.47); this drop sustained over 30 (7.44  ±  0.72) and 60 min (7.62  ±  0.44) without a significant difference at 120 min (7.78  ±  0.26). No change was observed in the rate of respiratory droplet dilution. There was no relationship between blood glucose and EBC pH values. Sugar intake may significantly decrease EBC pH. This effect needs to be considered when performing EBC pH studies. Further experiments are also warranted to investigate the effect of diet on other exhaled biomarkers

    Aging-Induced Dysregulation of Dicer1-Dependent MicroRNA Expression Impairs Angiogenic Capacity of Rat Cerebromicrovascular Endothelial Cells.

    No full text
    Age-related impairment of angiogenesis is likely to play a central role in cerebromicrovascular rarefaction and development of vascular cognitive impairment, but the underlying mechanisms remain elusive. To test the hypothesis that dysregulation of Dicer1 (ribonuclease III, a key enzyme of the microRNA [miRNA] machinery) impairs endothelial angiogenic capacity in aging, primary cerebromicrovascular endothelial cells (CMVECs) were isolated from young (3 months old) and aged (24 months old) Fischer 344 × Brown Norway rats. We found an age-related downregulation of Dicer1 expression both in CMVECs and in small cerebral vessels isolated from aged rats. In aged CMVECs, Dicer1 expression was increased by treatment with polyethylene glycol-catalase. Compared with young cells, aged CMVECs exhibited altered miRNA expression profile, which was associated with impaired proliferation, adhesion to vitronectin, collagen and fibronectin, cellular migration (measured by a wound-healing assay using electric cell-substrate impedance sensing technology), and impaired ability to form capillary-like structures. Overexpression of Dicer1 in aged CMVECs partially restored miRNA expression profile and significantly improved angiogenic processes. In young CMVECs, downregulation of Dicer1 (siRNA) resulted in altered miRNA expression profile associated with impaired proliferation, adhesion, migration, and tube formation, mimicking the aging phenotype. Collectively, we found that Dicer1 is essential for normal endothelial angiogenic processes, suggesting that age-related dysregulation of Dicer1-dependent miRNA expression may be a potential mechanism underlying impaired angiogenesis and cerebromicrovascular rarefaction in aging

    Necitumumab plus gemcitabine and cisplatin versus gemcitabine and cisplatin alone as first-line therapy in patients with stage IV squamous non-small-cell lung cancer (SQUIRE): an open-label, randomised, controlled phase 3 trial.

    Full text link
    BACKGROUND: Necitumumab is a second-generation, recombinant, human immunoglobulin G1 EGFR antibody. In this study, we aimed to compare treatment with necitumumab plus gemcitabine and cisplatin versus gemcitabine and cisplatin alone in patients with previously untreated stage IV squamous non-small-cell lung cancer. METHODS: We did this open-label, randomised phase 3 study at 184 investigative sites in 26 countries. Patients aged 18 years or older with histologically or cytologically confirmed stage IV squamous non-small-cell lung cancer, with an Eastern Cooperative Oncology Group (ECOG) performance status of 0-2 and adequate organ function and who had not received previous chemotherapy for their disease were eligible for inclusion. Enrolled patients were randomly assigned centrally 1:1 to a maximum of six 3-week cycles of gemcitabine and cisplastin chemotherapy with or without necitumumab according to a block randomisation scheme (block size of four) by a telephone-based interactive voice response system or interactive web response system. Chemotherapy was gemcitabine 1250 mg/m(2) administered intravenously over 30 min on days 1 and 8 of a 3-week cycle and cisplatin 75 mg/m(2) administered intravenously over 120 min on day 1 of a 3-week cycle. Necitumumab 800 mg, administered intravenously over a minimum of 50 min on days 1 and 8, was continued after the end of chemotherapy until disease progression or intolerable toxic side-effects occurred. Randomisation was stratified by ECOG performance status and geographical region. Neither physicians nor patients were masked to group assignment because of the expected occurrence of acne-like rash--a class effect of EGFR antibodies--that would have unmasked most patients and investigators to treatment. The primary endpoint was overall survival, analysed by intention to treat. We report the final clinical analysis. This study is registered with ClinicalTrials.gov, number NCT00981058. FINDINGS: Between Jan 7, 2010, and Feb 22, 2012, we enrolled 1093 patients and randomly assigned them to receive necitumumab plus gemcitabine and cisplatin (n=545) or gemcitabine and cisplatin (n=548). Overall survival was significantly longer in the necitumumab plus gemcitabine and cisplatin group than in the gemcitabine and cisplatin alone group (median 11.5 months [95% CI 10.4-12.6]) vs 9.9 months [8.9-11.1]; stratified hazard ratio 0.84 [95% CI 0.74-0.96; p=0.01]). In the necitumumab plus gemcitabine and cisplatin group, the number of patients with at least one grade 3 or worse adverse event was higher (388 [72%] of 538 patients) than in the gemcitabine and cisplatin group (333 [62%] of 541), as was the incidence of serious adverse events (257 [48%] of 538 patients vs 203 [38%] of 541). More patients in the necitumumab plus gemcitabine and cisplatin group had grade 3-4 hypomagnesaemia (47 [9%] of 538 patients in the necitumumab plus gemcitabine and cisplatin group vs six [1%] of 541 in the gemcitabine and cisplatin group) and grade 3 rash (20 [4%] vs one [<1%]). Including events related to disease progression, adverse events with an outcome of death were reported for 66 (12%) of 538 patients in the necitumumab plus gemcitabine and cisplatin group and 57 (11%) of 541 patients in the gemcitabine and cisplatin group; these were deemed to be related to study drugs in 15 (3%) and ten (2%) patients, respectively. Overall, we found that the safety profile of necitumumab plus gemcitabine and cisplatin was acceptable and in line with expectations. INTERPRETATION: Our findings show that the addition of necitumumab to gemcitabine and cisplatin chemotherapy improves overall survival in patients with advanced squamous non-small-cell lung cancer and represents a new first-line treatment option for this disease. FUNDING: Eli Lilly and Company

    Resveratrol induces mitochondrial biogenesis in endothelial cells

    No full text
    Pathways that regulate mitochondrial biogenesis are potential therapeutic targets for the amelioration of endothelial dysfunction and vascular disease. Resveratrol was shown to impact mitochondrial function in skeletal muscle and the liver, but its role in mitochondrial biogenesis in endothelial cells remains poorly defined. The present study determined whether resveratrol induces mitochondrial biogenesis in cultured human coronary arterial endothelial cells (CAECs). In CAECs resveratrol increased mitochondrial mass and mitochondrial DNA content, upregulated protein expression of electron transport chain constituents, and induced mitochondrial biogenesis factors (proliferator-activated receptor-coactivator-1α, nuclear respiratory factor-1, mitochondrial transcription factor A). Sirtuin 1 (SIRT1) was induced, and endothelial nitric oxide (NO) synthase (eNOS) was upregulated in a SIRT1-dependent manner. Knockdown of SIRT1 (small interfering RNA) or inhibition of NO synthesis prevented resveratrol-induced mitochondrial biogenesis. In aortas of type 2 diabetic (db/db) mice impaired mitochondrial biogenesis was normalized by chronic resveratrol treatment, showing the in vivo relevance of our findings. Resveratrol increases mitochondrial content in endothelial cells via activating SIRT1. We propose that SIRT1, via a pathway that involves the upregulation of eNOS, induces mitochondrial biogenesis. Resveratrol induced mitochondrial biogenesis in the aortas of type 2 diabetic mice, suggesting the potential for new treatment approaches targeting endothelial mitochondria in metabolic diseases

    Adaptive induction of NF-E2-related factor-2-driven antioxidant genes in endothelial cells in response to hyperglycemia

    No full text
    Hyperglycemia in diabetes mellitus promotes oxidative stress in endothelial cells, which contributes to development of cardiovascular diseases. Nuclear factor erythroid 2-related factor-2 (Nrf2) is a transcription factor activated by oxidative stress that regulates expression of numerous reactive oxygen species (ROS) detoxifying and antioxidant genes. This study was designed to elucidate the homeostatic role of adaptive induction of Nrf2-driven free radical detoxification mechanisms in endothelial protection under diabetic conditions. Using a Nrf2/antioxidant response element (ARE)-driven luciferase reporter gene assay we found that in a cultured coronary arterial endothelial cell model hyperglycemia (10–30 mmol/l glucose) significantly increases transcriptional activity of Nrf2 and upregulates the expression of the Nrf2 target genes NQO1, GCLC, and HMOX1. These effects of high glucose were significantly attenuated by small interfering RNA (siRNA) downregulation of Nrf2 or overexpression of Keap-1, which inactivates Nrf2. High-glucose-induced upregulation of NQO1, GCLC, and HMOX1 was also prevented by pretreatment with polyethylene glycol (PEG)-catalase or N-acetylcysteine, whereas administration of H2O2 mimicked the effect of high glucose. To test the effects of metabolic stress in vivo, Nrf2+/+ and Nrf2−/− mice were fed a high-fat diet (HFD). HFD elicited significant increases in mRNA expression of Gclc and Hmox1 in aortas of Nrf2+/+ mice, but not Nrf2−/− mice, compared with respective standard diet-fed control mice. Additionally, HFD-induced increases in vascular ROS levels were significantly greater in Nrf2−/− than Nrf2+/+ mice. HFD-induced endothelial dysfunction was more severe in Nrf2−/− mice, as shown by the significantly diminished acetylcholine-induced relaxation of aorta of these animals compared with HFD-fed Nrf2+/+ mice. Our results suggest that adaptive activation of the Nrf2/ARE pathway confers endothelial protection under diabetic conditions
    corecore